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ABSTRACT

* - A non-model based estimation procedure is introduced. The

best estimate is defined to be the geometric center of the

intersected error volume, and the error of the best estimate is

defined as the distance of the intersected error volume measured

from the center. Khachian's algorithm is extended to find the

best estimate. When the algorithm is viewed as a system of

nonlinear difference equations, conditions are established to

test the existence of periodic solutions. A stopping rule is

also introduced. A strategy for finding the error of the best

estimate is described. Examples are given to illustrate the

estimation procedure.



1. INTRODUCTION

The goodness of an estimator is assessed conventionally by

both the bias and variance of the estimator. The true meaning of

the bias and variance of an estimator can not be fully grasped

* unless the underlining model is accurately defined. Perhaps,

this is the reason why model reliability first introduced by

Akaike [ll has been widely accepted as an additional quantity for

assessing an estimator.

In reality, computability of bias, variance and model

reliability of an estimator is a serious question especially when

the underlining model is complicated. Some qualitative answers

to this computability question have been documented in [2], [3),

and [41. In particular, it has been shown in [31 that

observability is a necessary condition for the existence of an

unbiased estimate with bounded variance. Shall we give up if we

find that the system is not observable and there is no way to

compute the bias of the estimator? I would predict that most

people would not give up based on the evidence that abundant

Monte-Carlo simulation results have been reported in various

literatures. We certainly pay little attention to the simulation

results unless the model used is truly reliable that in turn, can

hardly be confirmed through simulations.
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In principle, a-priori information can be used to improve

the quality of an estimator. At least three different incidents

described below prove on the contrary that a-priori information

- actually hurts.

Mi The a-priori information is biased,

(ii) It is used improperly,

(iii) The model used is not reliable.

An example of case (ii) mentionded above has been examined in

[4] for a nonlinear initial state estimation problem.

To put the above abstract description of the difficulty of a

conventional statistical estimation procedure into perspective,

we shall confine ourself to the context of sensor calibration and

trajectory estimation problems from this point on. The proposed

estimation procedure reported herein certainly can be applied to

- various other problems as well. All examples given are related

* to sensors along the Western Test Range. Furthermore, sensor

biases and calibration constants are treated as interchangeable

terminologies.

In calibrating a sensor, the first step is to estimate the

position as a function of time of a target. The target can be an

inertial star, a satellite, a re-entry vehicle, or a calibration

balloon etc. that can be tracked by calibrated sensors and the

* sensor to be calibrated. Treating calibration constants as

unknowns, the calibration procedure can then be cast into an

* inversion problem that relates the position of the target to the
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sensor tracking data. When some calibration constants are not

observable, the inversion problem does not have a unique

solution. Examples of these unobservable cases can be found in

[41 and [5].

The hypothetical scenario described as follows motivates the

study of non-model based estimation reported herein. A newly

designed radar system in the island of Roi-Namur needs to be

calibrated. A calibration balloon is launched and drifted across

the Kwajalein lagoon. There are one calibrated radar, and five

calibrated optical sensors as well as the new radar system along

the Kwajalein atoll that track the calibration balloon. The

motion model of a balloon certainly is not reliable.

Observability of calibration constants of the new radar is

questionable. Furthermore, for each calibrated sensor, a-priori

information is available but no guarantee about its

authenticity. The problem to be addressed is how to find a way

to calibrate the new radar based on all information available.

For simplicity, we assume that the calibration constants are

in terms of range, azimuth, and elevation biases.* The

calibration problem posed above is therefore reduced to

estimating the position of the target at a fixed time instant

using all available information.

* Actual calibration procedures are much more complicated than

the assumption made here. Therefore, more than one point in
the space is needed.
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For each calibrated sensor, there is a best position

estimate with an error volume of the shape shown in Fig. 1, at

the fixed time based on all information available to the sensor.

C.

C D

A

Fig. 1. The shape of an error volume.

Thus, we have five error volumes from optical sensors and one

error volume from the calibrated radar in the space. These error

volumes may or may not intersect. When there exist non-

intersecting error volumes, subjective opinions arise. To

maintain the argument as objective as possible, we shall assume

that the majority of the error volumes do intersect. We shall

define the position estimate of the target as the geometric

center of the intersected error volume, and the error of the

position estimate is defined as the distance of the intersected

error volume measured from the geometric center. In the sequel,

* a rigorous mathematical treatment of the above description will

* be formulated. A methodology of finding the position estimate

* and its error is also described. Finally, examples are given.
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2. MATHEMATICAL FORMULATION

2.1. Description of a Polyhedron

p. The error volume of each sensor is shown in Fig. 1. For

mathematical tractability, we assume that the arcs AB (A'B') and

CD (C'D') are straight lines. Thus, the shape becomes a

prismatoid. The vertices of each prismatiod are given. A

polyhedron is formed by intersecting a number of prismatoids.

Following a consistent convention, the faces of a prismatoid can

be represented by a number of linear equations derived from the

given vertices. The polyhedron can therefore be described by a

matrix inequality given by

A x < b (2.1)

where x = a 3 by 1 vector,

A = a 6n by 3 matrix, where n is the number

ot prismatoids,

b = a 6n by 1 vector whose components are non-

negative.

The ith row of A and b will be denoted by Ai and bi

respectively. The transpose of a matrix A is denoted by AT.

, The Euclidean norm of a vector is denoted by 11'11*

When there are prismatoids that do not intersect with the

rest of the prismatoids, contradicting inequalities exist in

(2.1). Redundant inequalities may also exist in (2.1) if one

prismatoid contains the other. Algorithms are available for

detecting both contradicting and redundant inequalities [61, [7].
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The algorithm introduced in [71 will be used.

2.2 Khachian's Algorithm

Beginning with a point outside the polyhedron given by (2.1),

Khachian's algorithm can be used to find a point inside the

polyhedron. The basic method that Khachian follows is to

construct a minimum ellipsiod that contains one portion of another

ellipsoid cut by a hyperplane. An ellipsoid, E (x; C), can be

represented by its center x and a positive-definite matrix C given

by

E(x; C) = 1y; y = x + Cz, I IZI 1} (2.2)

Initially, let x0 be outside the polyhedron given by (2.1), and

E(x0 ; C0 ) be the ellipsiod so large that it contains the

polyhedron. The algorithm goes as follows.

Ck1 AkT
xk = X k_- - k=AkCkiAkT'

Ck = Ok - Yk (Ck-I AkT) (Ck-i AkT)T]

Ak Ck-l ATk

1+ m Yk
ak =

m + 1 (2.3)

(1 -gk
2 )m 2

Ok =
m2-1

2a k

Yk= ___

-0 1+ gk

gk (~ .k- -bk)/Ak Ck.. AkT
ogk -- (Ak Ek-l - 1:,-,.,.

where m = the dimension of xk, in our case m = 3.
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The volume of the ellipsoid is proportional to its determinant

(abbreviated by Det). A recursive relationship for the

determinants is given by

log (Det Ck). (m-I) (l-gk

= log (Det Ck_ 1 ) + m log Ok + lo[ (2.4)
(e+l) (l+gk)

The parameter gk measures the distance from the previous center

2E-i to the hyperplane Ak x = bk.

Several important situations are summarized as follows.

(i) If jgkj > 1 then the hyperplane Ak x = bk does not

intersect the polyhedron. Therefore, the corresponding

inequality is contradicting to others.

(ii) If Jgkj < 1 and Xk-l is outside the hyperplane

AkX = bk, then gk > 0.

(iii) If Ek- 1 is inside the hyperplane AkX = bk then

gk < 0. If gk <0 but Xk- 1 is outside the

polyhedron then Ak x ( bk is a redundant inequality.

Abundant literatures are available for detailed descriptions of

Khachian's algorithm.

*Suppose that a point inside the polyhedron is found. The

point need not be the geometric center of the polyhedron. Since

the shape of the polyhedron can be very irregular, its geometric

center is tough to define. In the next section, we shall see that

7
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extending Khachian's algorithm into the polyhedron can arrive at a

satisfactory definition of the geometric center of a polyhedron.

3. BEST ESTIMATE AND ITS ERROR

3.1 Existence of Periodic Solutions

Let !0 be the first point found inside the polyhedron and

E (x 0 ; C0 ) be the corresponding ellipsoid containing the

polyhedron. Khachian's algorithm ensures that all k will

remain inside the polyhedron. However, the ellipsoid E(xk;

Ck) does not necessarily contain E (xk-l; Ck-l). From now

on, we shall treat (2.3) as a system of difference equations with

initial condition ( 0 , C0 ), and call (Ek' Ck) as the solution

of the system. Furthermore, we shall assume that all inequalities

in (2.1) are compatible and relevant. The number of inequalities

is assumed to be N. After k reaches N, the first inequality is

called upon. We assign a new index N+I to the first inequality

and count on. Therefore, Ak is periodic with period N. The

following theorem establishes the situation for the existence of a

periodic solution.

Therem 3.1 If there exists K such that both conditions described

below satisty then (xk+N, Ck+N) = (xkw Ck) for all k > K.

() K > N, Det CK =Det CKN (3.1)

-.-. (ii) Either CK > CK-N or CK < CK-N

Proof: Since both CK and CKN are positive definite,

Minkowski's inequality [81 is applied to obtain

Det [CK + CKN] > Det CK + Det CKN (3.2)

L,0



and equality attains if CK A CKN where A is a non-negative

scalar. Based on (3.1), (3.2) and results in [91, we conclude

-. '. that CK f CKN. Therefore, gK+l - gK-N+l, that in turn,

implies

.K+l = UK-N+l

BK+I = OK-N+l

and

YK+l = YK-N+1"

Thus, Ck is periodic for all k > K. Since Ak is periodic with

period N, Xk is also periodic for all k > N.

When a periodic solution exists, the polyhedron is symetric

A
" with repect to its center. The best estimate denoted by x is

given by

SA 1 N
= _ k (3.3)

N k=K+l

Based on many empirical results, approximate periodic solutions do

exist. However, it seems to be beyond my ability to prove it

theoretically. The remainder of this subsection may be skipped

for those who believe the statement made above.

We shall now develop a criterion that can be used to detect

the inequality that when used will move the previous center of the

ellipsoid away from the center of the polyhedron.

9
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,', Theorem 3.2 If gk < - 1/m then E (.~k; Ck) does not contain

E(IXk-l ; Ck-f).

Proof: Since Ckl'is positive-definite, it can be decomposed

S,"into the form given by

Ck_1 - 1 ' DT D

where D is a nonsingular matrix. Let F be an orthogonal matrix

such that

DTAkT
F - P M

Define an affine transformation T such that

z= T (x)

= F D (x-

In z-domain, E (k_l; Ck_1) becomes a unit sphere centered at

the origin. The sphere projected on the plane of ei - e2 is shown

in Fig. 2. The hyperplane Akx = bk projected on the same

plane is also shown in Fig. 2. Note that Ok is the distance

from X k_ 1 to Ake is the distance from Xk_l to the

hyperplane AkX = bk, and (k)- 1 / 2 is the length of the

minor axis of E (xJk; Ck). If gk < - 1/rn then X~ is

located in between Xk_ 1 and hyperplane Akx = bk. Further-

more, we have (k)- 1 / 2 < 1. Thus, E (Ak; Ck) in z-domain

cuts the unit sphere.
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Xkp

Okk

POLYHEDRON ELLIPSE E(&; Ck)

UNIT CIRCLE kHYPERPLANE Ak&= bk
E(?k1; Ck.1)

Fig. 2. Two-dimensional Khachian Diagram.

It is of interests to note that both E (Xk-1; Ck I ) and

E (2Ek; Ck) have the same volumes if gk = - 1/. After the

algorithm is applied for a sufficiently large number of times, the

center of the ellipsoid tends to move towards the center of the

polyhedron. If Xk I is already in the vicinity of the center of

the polyhedron, then it is clear from Fig. 2 that applying Akxk

< bk moves Ek- 1 away from the center in _ - e plane. Thus,

the decision criterion goes as follows.

(i) If gk < -1/m then skip Ak_ < bk.
A

(ii) If for all inequalities gk < -1/m then X = Xk_1.

Again, empirical results show that the above decision rule

terminates the interation fairly quickly. Theoretical

justification remains to be seen.

11
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3.2 Error of the Best Estimate

A.
Suppose, now that the best estimate x is already found. A

simple translation can move the origin of the coordinate system to
A
x. We want to find a farthest point inside the polyhedron

measured from the origin. Mathematically, the problem is given by

maximizing (3.4)

subject to (2.1).

Therefore, it is a convex maximization problem. One of the

vertices of the polyhedron is a solution. It is clear that only a

finite number of searching steps is required. In this subsection,

a searching strategy is described for m=3.

Let V0 be a solution of (3.4) and let Vii denote the ith

vertex of the jth prismatoid. For each j, let Vj denote a

:- vertex among Vij, i = 1, 2, ..., 8 that has a maximum norm.

Furthermore, let V denote a vertex that has a minimum norm among

i - 1, ... , n. It is clear that we have the following

inequality,

I I1 O II - I lvlI
There are three inequalities in (2.1) that are associated with the

vertex V. Except there three inequalities, those other

inequalities that satisfy the inequality described below are

redundant, and they can be discarded.

0 < Ai V < bi (3.6)

To prove the above statement, let's suppose that V0 lies on the

hyperplane given by Ai.x - bi . By (3.6) we know that V lies in

between the hyperplane and the origin. Therefore, we have

12
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Combining (3.6) and (3.7), we conclude that V is also a solution.

Therefore, the inequalities satisfying (3.6) are redundant, and

they can be discarded.

Selecting one relevant inequality that is not from a

referenced prismatoid that is chosen arbitrarily, and two

inequalities from the referenced prismatoid, we form a set of

three simultaneous linear equations in order to find a new

vertex. Two different situations may happen that are described

below.

Case 1 The hyperplane associated with the first inequality is

parallel to the edge formed by intersecting two faces of the

referenced prismatoid. We, therefore, skip this inequality

because no unique vertex can be found from this set of linear

equations.

Case 2 The set of three simultaneous linear equations has a

unique solution denoted by U. A decision is made based upon the

following rule.

Rule If lUll > i then skip the first inequality mentioned

above because U can not be a solution. If 11!!j < IlVii then put

U in a pool of vertices including those of the referenced

prismatoid, and proceed to select another set of three
I

simultaneous linear equations. The new set of linear equations

also contains one relevant inequality that is not from the

referenced prismatoid, and two inequalities from the referenced

prismatoid.

13



The same procedure repeats until each prismatoid has been

chosen as the referenced prismatoid. A pool of feasible vertices

that satisfy (2.1) is generated. The largest norm in the pool of

feasible vertices is the error of the best estimate.

- 4. EXAMPLE

The purpose of showing an example in this section is two-

fold. First, it illustrates the theorems introduced in the

previous section. Second, it shows the practical aspect of the

estimation procedure.

To complete the story mentioned in Section 1, one radar,

ALCOR, and five optical sensors, SRl, SR3, SR5, SR6, and SR9 are

the calibrated sensors. Their geometric distribution along the

Kwajalein atoll is shown in Fig. 3.

ROI-NAPAUR

SR5 ALCOR

44SR . GAGAN

,... a..°..:.o

LEGAN% SR3 ENIWETAK

SR9

0 10 20 30 SN SI I I I SRI
KWAJALEIN

SCALE (kin)

Fig. 3. The Geometric Distribution of Six Sensors.
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A point northeast to the island of Noi-Namur, 90 km up, and

about 240 km away is selected as the true position of the target.

The a-priori information about the accuracy of each sensor is

shown in Table 1. Note that the optical sensors do

TABLE 1
SENSOR ACCURACY STATEMENT

ALCOR SRl, 3, 5, 6, 9

Range 1 100
(i)

Azimuth 60 33
(p rad)

Elevation 74 43
( r ad)

not measure ranges, however, an arbitrary range accuracy 100 m is

chosen. The results reported in this section are insensitive to

some numbers larger than 100 m.

The target position vector is transformed to a R-A-E

coordinate system centered at the measurement site for each

sensor. Eight possible vertices are created for each sensor

according to the accuracy statement shown in Table 1. Finally,

coordinate transformations are performed to transfer all vertices

to a common earth-centered, earth-fixed coordinate system. Thus,

six prismatoids in ths space are created, and thirty-six

inequalities are put into a form given by (2.1).

Since all prismatoids have the same center (the true target

position) the intersected polyhedron is symmetric. Therefore, a

periodic solution exists for this artificial example. The

*15
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position estimate is computed according to (3.3), and it agrees

with the true position to within fractions of a meter. The errors

of -the estimate for various sensor combinations are shown in

Table 2.

TABLE 2
ERRORS OF THE POSITION ESTIMATE

*Case Sensors Error (m)

1 ALCOR 23

2 ALCOR + SR5 13

3 ALCOR + All SRS 13

4 one SR Alone 101

5 SR5 + R3 77

6 SR5 +SR1 56

-,7 All SRS 56

For this artifical example with a specific geometry, it is

concluded from Table 2 that the combination of ALCOR and one almost

co-located optical sensor (Case 2) can achieve a position estimate

as accurate as the estimate obtained by using all six sensors (Case

3). It is also interested to note that the accuracy of two optical

sensors in Case 6 is the same as Case 7.

5. STATISTICAL INTERPRETATION OF THE EXAMPLE

It is important to note that the proposed philosophy and method

should not be used to assess the quality of an unbiased estimate.

If it is certain that the estimate is unbiased, a conventional

covariance analysis technique is preferred. To illustrate this

point of view, let us assume that the position estimate based on

each of the sensor mentioned in the previous section is unbiased

16



with equal variance. The combined variance is reduced to one sixth

of the individual variance. Applying the proposed error definition

we do not obtain any error reduction.

on the other hand, if it is certain that the estimate is

biased and there is no way to compute the bias then the proposed

error computation may be used to assess the amount of the bias of

the estimate. The observability condition of an estimation

problem in general is much easier to be examined than the

existence of an unbiased estimate. Since we know that

observability is necessary for the existence of an unbiased

estimate, the proposed philosophy and method could be very

valuable for assessing the quality of an estimate of an

unobservable system.

6. SUMMARY AND CONCLUSION

We first explain why a non-model based estimation procedure

is preferred in some occassions. We then define the best estimate

and its associated error as the geometric center and the distance

of the intersected error volume derived based on a number of

individual sets of measurements and their own a-priori knowledge.

we discover that Khachian's algorithm can be used to find the

geometric center of a finite dimensional polyhedron. Once the

center is located, a method is introduced to find the distance of

0 the polyhedron. The philosophy and the technique are applied to a

set of sensors located along the Kwajalein atoll for evaluating

each sensor's contribution to determining the position of a target.

17
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